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Abstract. Metric learning has been widely used in face and kinship ver-
ification and a number of such algorithms have been proposed over the
past decade. However, most existing metric learning methods only learn
one Mahalanobis distance metric from a single feature representation
for each face image and cannot deal with multiple feature representa-
tions directly. In many face verification applications, we have access to
extract multiple features for each face image to extract more comple-
mentary information, and it is desirable to learn distance metrics from
these multiple features so that more discriminative information can be
exploited than those learned from individual features. To achieve this,
we propose a new large margin multi-metric learning (LM3L) method
for face and kinship verification in the wild. Our method jointly learns
multiple distance metrics under which the correlations of different fea-
ture representations of each sample are maximized, and the distance of
each positive is less than a low threshold and that of each negative pair
is greater than a high threshold, simultaneously. Experimental results
show that our method can achieve competitive results compared with
the state-of-the-art methods.

1 Introduction

Metric learning techniques have been widely used in many visual analysis appli-
cations such as face recognition [5, 9, 21], image classification [28], human activity
recognition [27], and kinship verification [17]. Over the past decade, a large num-
ber of metric learning algorithms have been proposed and some of them have
been successfully applied to face and kinship verification [5,9,17, 21]. In face im-
age analysis, we usually have access to multiple feature representations for each
face image and it is desirable to learn distance metrics from these multiple fea-
ture representations such that more discriminative information can be exploited
than those learned from individual features. A possible solution is to concate-
nate different features together as a new feature vector and then apply existing
metric learning algorithms directly on the concatenated vector. However, this
concatenation is not physically meaningful because each feature has its own sta-
tistical characteristic, and such a concatenation ignores the diversity of multiple
features and cannot effectively explore their complementary information.

In this paper, we propose a new large margin multi-metric learning (LM3L)
method for face and kinship verification in the wild. Instead of learning a distance
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Fig. 1. Illustration of our large margin multi-metric learning method for face verifica-
tion, which jointly learns multiple distance metrics, one for each feature descriptor, and
collaboratively optimizes the objective function over different features. (a) A training
face image set; (b) The extracted K different feature sets; (¢) The distribution of these
multiple feature representations in the Euclidean metric space; (d) Our LM3L learning
procedure; (e) The learned multiple distance metrics; (f) The test face image pair;
(g) The extracted multiple feature descriptors of the test face pairs; (h) The overall
distance by fusing the multiple distance metrics learned by our method.

metric with concatenated feature vectors, we jointly learn multiple distance met-
rics from multiple feature representations, where one metric is learned for each
feature and the correlations of different feature representations of each sample
are maximized, and the distance of each positive face pair is less than a small-
er threshold and that of each negative pair is higher than a larger threshold,
respectively. Experimental results on three widely used face datasets show that
our method can obtain competitive results compared with the state-of-the-art
methods. Fig. 1 illustrates the working flow of our method.

2 Related Work

Face and Kinship Verification in the Wild: In recent years, many ap-
proaches have been proposed for face and kinship verification in the wild, and
they can be mainly classified into two categories: feature-based [7, 10, 37, 38] and
model-based [17, 18, 33, 34]. Feature-based methods represent each face image by
using a hand-crafted or learned descriptor. State-of-the-art descriptors include
Gabor feature, local binary pattern (LBP) [1], locally adaptive regression kernel
(LARK) [23], probabilistic elastic matching (PEM) [15], fisher vector faces [25],
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discriminant face descriptor [14], and spatial face region descriptor (SFRD) [5].
Representative model-based methods are subspace learning, sparse representa-
tion, metric learning, multiple kernel learning, and support vector machine. In
this paper, we propose a metric learning method to learn multiple distance met-
rics with multiple feature representations to exploit more discriminative infor-
mation for face and kinship verification in the wild.

Metric Learning: A number of metric learning algorithms have been pro-
posed in the literature, and most of them seek an appropriate distance metric
to exploit discriminative information from the training samples. Representative
metric learning methods include neighborhood component analysis (NCA) [§],
large margin nearest neighbor (LMNN) [29], information theoretic metric learn-
ing (ITML) [6], logistic discriminant metric learning (LDML) [9], cosine sim-
ilarity metric learning (CSML) [21], KISS metric embedding (KISSME) [13],
pairwise constrained component analysis (PCCA) [20], neighborhood repulsed
metric learning (NRML) [17], pairwise-constrained multiple metric learning (P-
MML) [5], and similarity metric learning (SML) [3]. While these methods have
achieved encouraging performance in face and kinship verification, most of them
learn a distance metric from single feature representation and cannot deal with
multiple features directly. Different from these methods, we propose a multi-
metric learning method by collaboratively learning multiple distance metrics,
one for each feature, to better exploit more complementary information from
multiple feature representations for face and kinship verification in the wild.

3 Proposed Method

Before detailing our method, we first list the notations used in this paper. Bold
capital letters, e.g., Xy, Xo, represent matrices, and bold lower case letters,
e.g., X1, Xo, represent column vectors. Given a multi-feature data set with NV
training samples, i.e., X = {Xj, € R&*N1K wwhere X;, = [xF, x5, x%] is
the feature matrix extracted from the kth feature descriptor; x¥ is the feature
vector of the sample x; in the kth feature space, k = 1,2,--- , K; K is the total
number of features; and dj, is feature dimension of x*

P

3.1 Problem Formulation

Let X = [x},x5,--- ,x%] be a feature set from the kth feature representation,
the squared Mahalanobis distance between a pair of samples x* and x? can be
computed as:
d%/lk (X?,X?) = (Xf - X?)TMk(Xf - X?), (1)
where My, € R%* >4k ig g positive definite matrix.
We seek a distance metric My, such that the squared distance d%/lk(xf,xf)
for a face pair xﬁ? and X;‘f in the kth feature space should be smaller than a given
threshold puyx — 7 (ux > 7% > 0) if two samples are from the same subject, and
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larger than a threshold py + 73 if these two samples are from different subjects,
which can be formulated as the following constraints:

Yij (Hk - d12v1,€ (Xfaxf)) > Tk, (2)

where y;; = 1 if x¥ and x? are from the same person, otherwise y;; = —1.
To learn My, we define the constraints in Eq. (2) by a hinge loss function,
and formulate the following objective function to learn the kth distance metric:

Il{l/ll;? Ik:Zh(’rk—y”(#k_dlz\/[k(xfaxf)))7 (3)

.3

where h(z) = max(z,0) represents the hinge loss function.
Then, our large margin multi-metric learning (LM3L) method aims to learn
K distance metrics {Mj € R%>*4} K for a multi-feature dataset, such that

1. The discriminative information from each single feature can be exploited as
much as possible;

2. The differences of different feature representations of each sample in the
learned distance metrics are minimized, because different features of each
sample share the same semantic label.

Since the difference computation of the sample x; from the kth and /¢th
(1 < k¢ < K, k # 0) feature representations relies on the distance metrics
M, and My, which could be different in dimensions, it is infeasible to compute
them directly. To address this, we use an alternative constrain to reflect the
relationships of different feature representations. Since the difference of x¥ and

Xf, and that of X;? and X§ are expected to be minimized as much as possible,

the distance between x¥ and X?, and that of x!{ and x§- are also expected to
be as small as possible. Hence, we formulate the following objective function to

constrain the interactions of different distance metrics in our LML method:

K K )
Mln-l-h%v[KJ = Zwk I + A Z Z (de(xf,xf) - dMZ(xf,xf)) )
T k=1 kt=1,k<{ i,j
K
st > wp=1, wp >0, A>0, (4)
k=1

where wy, is a nonnegative weighting parameter to reflect the importance of the
kth feature in the whole objective function, and A weights the pairwise difference
of the distance between two samples x; and x; in the learned distance metrics
M, and M. The physical meaning of Eq. (4) is that we aim to learn K distance
metrics {Mj,}_, under which the difference of feature representations of each
pair of face samples is enforced to be as small as possible, which is consistent to
the canonical correlation analysis-based multiple feature fusion approach [24].
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Having obtained multiple distance metrics {Mj}£ || the distance between
two multi-feature data x; and x; can be computed as

(X0, X5) Zwk - TMk( —xf). (5)

The trivial solution of Eq. (4) is wi = 1, which corresponds to the minimum
I, over different feature representations, and wy = 0 otherwise. This solution
means that only one single feature that yields the best verification accuracy is
selected, which does not satisfy our objective on exploring the complementary
property of multi-feature data.

To address this shortcoming, we modify wy, to be w} (p > 1), then the new
objective function is rewritten as:

Mlfmn J= ng I + A Z Z (de ) — dMg(Xf7X§))2?

kt=1,k<fl i,5

s.t. Zwk:L wy, >0, A > 0. (6)
k=1

3.2 Alternating Optimization

To our best knowledge, it is non-trivial to seek a global optimal solution to
Eq. (6) because there are K metrics to be learned simultaneously. In this work,
we employ an iterative method by using the alternating optimization method
to obtain a local optimal solution. The alternating optimization learns M and
wy in an iterative manner. In our experiments, we randomly select the order of
different features to start the optimization procedure and our tests show that
the influence of this order is not critical to the final verification performance.

Fix w = [wy, we, -+ ,wk], update M. With the fixed w, we can cyclically
optimize Eq. (6) over different features. We sequentially optimize My with the
fixed My, -+, My_1, Mgyq, -+, Mg. Hence, Eq. (6) can be rewritten as:

K
2
min J=wf Lt A Y D (da (xbx) — dan, (X)) Ay (7)
0=1,0+£k i,j

where Aj is a constant term.
To learn metric My, we employ a gradient-based scheme. After some alge-
braic simplification, we can obtain the gradient as:

dnr, (x5, %5)
k o k
*wk E yih'(2)Ci; + A E E (1 3 < Xk))C”’ (8)

(=1,0#k 1i,j k

where z = 7, — yij (ur — d3y, (xF,x%)) and Cf; = (x} xé“)(xi€ —x5)T. The C};

l
denotes the outer product of pairwise dlfferences h'(x) is the derivative of h(x),
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and we handle the non-differentiability of h(x) at © = 0 by adopting a smooth
hinge function as in [22,26]. In addition, we use some derivations given as:

1
d k, k Ck ’ 9
My, (X'L X]) 2 de( x} ,XJ) ij ( )

OMy,

9 k ¢ )
TMk(de(X X) dmr, (x z7Xj))

0
=2 (d (e ) = v, (xt, x§)) e (e )
dMe(Xeaxe)
=(1-—"——"22) Ck. 10
< de(X57X§)> Y ( )

Then, matrix My, can be obtained by using a gradient descent algorithm:

oJ

My =M, -8 M,

(11)
where (3 is the learning rate.

In practice, directly optimizing the Mahalanobis distance metric My may
suffer slow convergence and overfitting problems if data is very high-dimensional
and the number of training samples is insufficient. Therefore, we propose an al-
ternative method to jointly perform dimensionality reduction and metric learn-
ing, which means a low-rank linear projection matrix Ly € R**% (s < dy)
is learned to project each sample xf from the high-dimensional input space to
a low-dimensional embedding space, where the distance metric M = L, L.
Then, we differentiate the objective function J with respect to L, and obtain
the gradient as follows:

(=14#k 1,5 Z’ J

Lastly, the matrix L; can be obtained by using a gradient descent rule:

0J

Ly=L; -8 3L,

(13)

Fix My, k£ = 1,2,--- , K, update w. Now, we update w with the fixed
{Mk}szl. We construct a Lagrange function as follows:

K
wn):Zw’Z I+ A Z Z(de x5, ] cll\/[,z(xf,xﬁ))2
k=1

kl=1,k<l i,

K
—n(;wk—l). (14)
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Algorithm 1: LM3L

Input: Training set {X}~_; from K views; Learning rate 8; Parameter p, A,
wr and 7x; Total iterative number T'; Convergence error €.
Output: Multiple metrics: M1, Mg, --- , Mg; and weights: w1, w2, -+ ,wk.
Step 1 (Initialization):
Initialize Ly = Bk X%
wy,=1/K, k=1,--- K.
Step 2 (Alternating optimization):
fort=1,2,---,7T, do
for k=1,2,--- K, do
Compute Ly by Egs. (12) and (13).
end for
Compute w according to Eq. (17).
Computer J via Eq. (6).
Ift>1and |[JY - J0 Y| <¢
Go to Step 3.
end if
end for
Step 3 (Output distance metrics and weights):
M, =L"Ly, k=1,2,--- K.
Output M1, My, -+ Mg and w.

Let 2La0v1) _ () and %7‘;”7) =0, we have
OLa(w, —
#:Pwilﬁf—ﬁ:ov (15)
OLa(w,n) u
T’U:Zwk—lzo. (16)
k=1

According to Egs. (15) and (16), w can be updated as follows:
1/(p—1
(1 / Ik) /(p—1)

17 .
Z (1/116)1/(1)71)
k=1

Wr =

(17)

We repeat the above two steps until the algorithm meets a certain conver-
gence condition. The proposed LM?L algorithm is summarized in Algorithm
1, where E € R***% is a matrix with 1’s on the diagonal and zeros elsewhere.

4 Experiments

To evaluate the effectiveness of our LM3L method, we conduct face and kinship
verification in the wild experiments on three real-world face datasets including
the Labeled Faces in the Wild (LFW) [12], the YouTube Faces (YTF) [30],
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KinFaceW-Il

Fig. 2. Some sample positive pairs from the LFW, YTF and KinFaceW-II datasets.

and the KinFaceW-II [17]. Fig. 2 shows some sample images from these three
datasets. The parameters p, 3, A, u and 73 of our LM>L method were empirically
set as 2, 0.001, 0.1, 5 and 1 for all Kk = 1,2,--- , K, respectively. The following
details the experiments and results.

4.1 Datasets and Settings

LFW. The LFW dataset [12] contains more than 13000 face images of 5749 sub-
jects collected from the web with large variations in expression, pose, age, illu-
mination, resolution, and so on. There are two training paradigms for supervised
learning on this dataset: image-restricted and unrestricted. In our experiments,
we use the image-restricted setting where only the pairwise label information is
required to train our method. We follow the standard evaluation protocol on the
“View 2”7 dataset [12] which includes 3000 matched pairs and 3000 mismatched
pairs and is divided into 10 folds with each fold consisting of 300 matched (pos-
itive) pairs and 300 mismatched (negative) pairs. We use the aligned LFW-a
dataset! for our evaluation, and crop each image into 80 x 150 to remove the
background information. For each face image, we extracted three different fea-
tures: 1) Dense SIFT (DSIFT) [16]: We densely sample SIFT descriptors on each
16 x 16 patch without overlapping and obtain 45 SIF'T descriptors. Then, we con-
catenate these SIFT descriptors to form one 5, 760-dimensional feature vector;
2) LBP [1]: We divide each image into 8 x 15 non-overlapping blocks, where the
size of each block is 10 x 10. Then, we extract a 59-dimensional uniform pattern
LBP feature for each block and concatenate them to form a 7080-dimensional
feature vector; 3) Sparse SIFT (SSIFT): We use the SSIFT feature provided
by [9], which first localizes nine fixed landmarks in each image and extract-
s SIFT features over three scales at these landmarks, then concatenates these
SIFT descriptors to form one 3456-dimensional feature vector. For these three
features, we performed whitened PCA (WPCA) to project each feature into a
200 dimensional feature subspace, respectively.

! Available: http://www.openu.ac.il/home/hassner/data/1fwa,.
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YTF. The YTF dataset [30] contains 3425 videos of 1595 different people
collected from YouTube site. There are large variations in pose, illumination,
and expression in each video, and the average length of each video clip is 181.3
frames. In our experiments, we follow the standard evaluation protocol and test
our method for unconstrained face verification with 5000 video pairs. These
pairs are equally divided into 10 folds with each fold has 250 intra-personal
pairs and 250 inter-personal pairs. Similar to LFW, we also adopt the image
restricted protocol to evaluate our method. For this dataset, we directly use
three feature descriptors including LBP, Center-Symmetric LBP (CSLBP) [30]
and Four-Patch LBP (FPLBP) [31] which are provided by [30]. Since all face
images have been aligned by the detected facial key points, we average all the
feature vectors within one video clip to form a mean feature vector. Lastly, we
also use WPCA to map each feature into a 200-dimensional feature vector.

KinFaceW-II. The KinFaceW-II [17] is a kinship face dataset collected from
the public figures or celebrities and their parents or children. There are four kin-
ship relations in the KinFaceW-II datasets: Father-Son (F-S), Father-Daughter
(F-D), Mother-Son (M-S) and Mother-Daughter (M-D), and each relation con-
tains 250 pairs of kinship images. Following the experimental settings in [17],
we construct 250 positive pairs (with kinship) and 250 negative pairs (without
kinship) for each relation. For each face image, we also extract four types of
features: LEarning-based descriptor (LE) [4], LBP, TPLBP and SIFT, and their
dimensions are 200, 256, 256 and 200, respectively. We adopted the 5-fold cross
validation strategy for each of the four subsets in this dataset and the finial
results are reported by the mean verification accuracy.

4.2 Experimental Results on LFW

Comparison with Different Metric Learning Strategies: We first com-
pare our method with three other different metric learning strategies: 1) Single
Metric Learning (SML): we learn a single distance metric by using Eq. (3) with
each feature representation; 2) Concatenated Metric Learning (CML): we first
concatenate different features into a longer feature vector and then apply Eq. (3)
to learn a distance metric; 3) Individual Metric Learning (IML): we learn the
distance metric for each feature representation by using Eq. (3) and then use the
equal weight to compute the similarity of two face images with Eq. (5). Table 1
records the verification rates with standard error of different metric learning s-
trategies on the LFW dataset under the image restricted setting. We can see that
our LM?L consistently outperforms the other compared metric learning strate-
gies in terms of the mean verification rate. Compared to SML, our LM3L learns
multiple distance metrics with multi-feature representations, such that more dis-
criminative information can be exploited for verification. Compared with CML
and IML, our LM3L can jointly learn multiple distance metrics such that the
distance metrics learned for different features can interact each other such that
more complementary information can be extracted for verification.
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Table 1. Comparisons of the mean verification rate (%) with different metric learning
strategies on the LFW under image-restricted setting with label-free outside data.

Method | Feature | Accuracy (%)
SML DSIFT 84.30 £ 2.17
SML LBP 83.83 £1.31
SML SSIFT 84.58 £1.14
CML All 82.40 £ 1.62
IML All 87.78 £1.83
LM’L All 89.57 + 1.53

Table 2. Comparisons of the mean verification rate (%) with the state-of-the-art results
on the LFW under image-restricted setting with label-free outside data, where NoF
denotes the number of feature used in each method.

Method NoF | Accuracy (%)
PCCA [20] 1 83.80 + 0.40
PAF [35] 1 87.77 £ 0.51
CSML+SVM [21] 6 88.00 + 0.37
SFRD+PMML [5] 8 89.35 + 0.50
Sub-SML [3] 6 89.73 +0.38
DDML [11] 6 90.68 + 1.41
VMRS [2] 10 91.10 + 0.59
LML 3 89.57 +1.53

Comparison with the State-of-the-Art Methods: We compare our
LM3L method with the state-of-the-art methods on the LFW dataset?. These
compared methods can be categorized into metric learning based methods such
as LDML [9], PCCA [20], CSML+SVM [21], DML-eig combined [36], SFRD-+
PMML [5], Sub-SML [3], and discriminative deep metric learning (DDML) [11];
and descriptor based methods such as Multiple LE+comp [4], Pose Adaptive
Filter (PAF) [35], and high dimensional vector multiplication (VMRS) [2]. Ta-
ble 2 tabulates the mean verification rate with standard error and Fig. 3 shows
the ROC curves of different methods on this dataset, respectively. We can see
that our LM3L achieves competitive results with these state-of-the-art methods
except VMRS [2] and DDML [11], where they run on the 10 and 6 kinds of
feature, respectively.

Comparison with the Latest Multiple Metric Learning Method:
We compare our LM3L method with the latest multiple metric learning method
called PMML [5]. The standard implementation of PMML was provided by the
original authors. Table 3 tabulates the mean verification rate with standard error
on this dataset. We can clearly see that our LM?L significantly outperforms
PMML on the LFW dataset. This is because our LM3L can adaptively learn
different weights to reflect the different importance of different features while

2 Available: http://vis-www.cs.umass.edu/1fw /results.html.
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Fig. 3. Comparisons of ROC curves between our LM3L and the state-of-the-art meth-
ods on the LFW under image-restricted setting with label-free outside data.

Table 3. Comparison with the latest multiple metric learning method on the LFW
under image-restricted setting with label-free outside data.

Method Accuracy (%)
PMML [5] | 85.23+ 1.69
LML 89.57 + 1.53

PMML assigns equal weights to different features, such that our method can
better exploit the complementary information.

4.3 Experimental Results on YTF

Comparison with Different Metric Learning Strategies: Similar to LFW,
we also compare our method with different metric learning strategies such as
SML, CML, and IML on the YTF dataset. Table 4 records the verification
rates of different metric learning strategies on the YTF dataset under the image
restricted setting. We can also see that our LM3L consistently outperforms the
other metric learning strategies in terms of the mean verification rate.

Comparison with the State-of-the-Art Methods: We compare our
method with the state-of-the-art methods on the YTF dataset. These compared
methods include Matched Background Similarity (MBGS) [30], APEM [15],
STFRD+PMML [5], MBGS+SVM& [32], VSOF+O0SS (Adaboost) [19], and D-
DML [11]. Table 5 records the mean verification rate with the standard error,
and Fig. 4 shows the ROC curves of our LM3L and the state-of-the-art meth-
ods on the YTF dataset, respectively. We can observe that our LM3L method
achieves competitive result compared with these state-of-the-art methods on this
dataset under the image restricted setting.



12 J. Hu et al.

Table 4. Comparison of the mean verification rate with standard error (%) with dif-
ferent metric learning strategies on the YTF under the image restricted setting.

Method | Feature | Accuracy (%)
SML CSLBP 73.66 = 1.52
SML FPLBP 75.02 £ 1.67
SML LBP 78.46 + 0.94
CML All 75.36 + 2.37
IML All 80.12 +1.33
LM°L All 81.28 £1.17

Table 5. Comparisons of the mean verification rate with standard error (%) with the
state-of-the-art results on the YTF under the image restricted setting.

Method Accuracy (%)
MBGS (LBP) [30] 76.40 £ 1.80
APEM (LBP) [15] 77.44 +£1.46
APEM (fusion) [15] 79.06 £ 1.51
STFRD+PMML [5] 79.48 £2.52
MBGS+SVME [32] 79.48 £ 2.52
VSOF+O0SS (Adaboost) [19] 79.70 £ 1.80
DDML (combined) [11] 82.34 £ 1.47
LM°L 81.28 £1.17

Comparison with the Latest Multiple Metric Learning Method:
Table 6 shows the mean verification rate with standard error of our proposed
method and PMML method on the YTF dataset. We can clearly see that our
LM3L outperforms PMML on this dataset.

4.4 Experimental Results on KinFaceW-II

Comparison with Different Metric Learning Strategies: We first compare
our method with SML, CML, and IML on the KinFaceW-II dataset. Table 7
records the mean verification rates of different metric learning strategies on the
KinFaceW-II dataset for four relations, respectively. We can also see that our
LM3L consistently outperforms the other compared metric learning strategies in
terms of the mean verification rate.

Comparison with the State-of-the-Art Methods: We compare our
method with the state-of-the-art methods on the KinFaceW-II dataset. These

Table 6. Comparison with the existing multiple metric learning method on the YTF
under the image restricted setting.

Method Accuracy (%)
PMML [5] 76.60 + 1.62
LML 81.28 £1.17
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Fig. 4. Comparisons of ROC curves between our LM3L and the state-of-the-art meth-
ods on the YTF under the image restricted setting.

Table 7. Comparisons of the mean verification rate (%) with different metric learning
strategies on the KinFaceW-II dataset.

Method Feature F-S F-D M-S M-D Mean
SML LE 76.2 70.1 72.4 71.8 72.6
SML LBP 66.9 65.5 63.1 68.3 66.0
SML TPLBP 71.8 63.3 63.0 67.6 66.4
SML SIFT 68.1 63.8 67.0 63.9 65.7
CML All 76.3 67.5 74.3 75.4 73.4
IML All 79.4 71.5 76.3 77.3 76.1
LM°L All 82.4 74.2 79.6 78.7 78.7

Table 8. Comparisons of the mean verification rate (%) with the state-of-the-art meth-
ods on the KinFaceW-II dataset.

Method Feature F-S F-D M-S M-D Mean
PMML [5] All 777 | 724 | 763 | 74.8 75.3
MNRML [17] All 769 | 743 | 774 | 776 76.5
LM°L All 824 | 742 | 79.6 | 787 787

compared methods include MNRML [17] and PMML [5]. Table 8 reports the
mean verification rates of our method and these methods. We can observe that
our LM3L achieves about 2.0% improvement over the current state-of-the-art
result on this dataset for kinship verification.
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tions on the LFW dataset. on the LFW dataset.

4.5 Parameter Analysis

Since LM?L is an iterative algorithm, we first evaluate its convergence with
different number of iterations. Fig. 5 shows the value of the objective function
of LM3L versus different number of iterations on the LFW dataset. We can see
that the convergence speed of LM?L is fast and it converges in 5 — 6 iterations.

Lastly, we evaluate the performance of LM3L versus different feature dimen-
sions. Fig. 6 shows the mean verification rate versus different feature dimensions
on the LFW dataset. We can see that the proposed LML method can achieve
stable performance when the feature dimension reaches 150.

5 Conclusion and Future Work

In this paper, we have proposed a large margin multi-metric learning (LM?3L)
method for face and kinship verification. Our method has jointly learned multiple
distance metrics under which more discriminative and complementary informa-
tion can be exploited. Experimental results show that our method can achieve
competitive results compared with the state-of-the-art methods. For future work,
we are interested to apply our method to other computer vision applications such
as visual tracking and action recognition to further show its effectiveness.
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